extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(S3xC6) = C3xA4:Q8 | φ: S3xC6/C6 → S3 ⊆ Aut C23 | 72 | 6 | C2^3.1(S3xC6) | 288,896 |
C23.2(S3xC6) = C12xS4 | φ: S3xC6/C6 → S3 ⊆ Aut C23 | 36 | 3 | C2^3.2(S3xC6) | 288,897 |
C23.3(S3xC6) = C3xC4:S4 | φ: S3xC6/C6 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.3(S3xC6) | 288,898 |
C23.4(S3xC6) = C6xA4:C4 | φ: S3xC6/C6 → S3 ⊆ Aut C23 | 72 | | C2^3.4(S3xC6) | 288,905 |
C23.5(S3xC6) = C3xA4:D4 | φ: S3xC6/C6 → S3 ⊆ Aut C23 | 36 | 6 | C2^3.5(S3xC6) | 288,906 |
C23.6(S3xC6) = C3xC23.6D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 24 | 4 | C2^3.6(S3xC6) | 288,240 |
C23.7(S3xC6) = C3xC23.7D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 24 | 4 | C2^3.7(S3xC6) | 288,268 |
C23.8(S3xC6) = C3xC23.8D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.8(S3xC6) | 288,650 |
C23.9(S3xC6) = C3xC23.9D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.9(S3xC6) | 288,654 |
C23.10(S3xC6) = C3xDic3:D4 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.10(S3xC6) | 288,655 |
C23.11(S3xC6) = C3xC23.11D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.11(S3xC6) | 288,656 |
C23.12(S3xC6) = C3xC23.12D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.12(S3xC6) | 288,707 |
C23.13(S3xC6) = C3xD6:3D4 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.13(S3xC6) | 288,709 |
C23.14(S3xC6) = C3xC23.14D6 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.14(S3xC6) | 288,710 |
C23.15(S3xC6) = C3xC12:3D4 | φ: S3xC6/C32 → C22 ⊆ Aut C23 | 48 | | C2^3.15(S3xC6) | 288,711 |
C23.16(S3xC6) = A4xDic6 | φ: S3xC6/D6 → C3 ⊆ Aut C23 | 72 | 6- | C2^3.16(S3xC6) | 288,918 |
C23.17(S3xC6) = C4xS3xA4 | φ: S3xC6/D6 → C3 ⊆ Aut C23 | 36 | 6 | C2^3.17(S3xC6) | 288,919 |
C23.18(S3xC6) = A4xD12 | φ: S3xC6/D6 → C3 ⊆ Aut C23 | 36 | 6+ | C2^3.18(S3xC6) | 288,920 |
C23.19(S3xC6) = C2xDic3xA4 | φ: S3xC6/D6 → C3 ⊆ Aut C23 | 72 | | C2^3.19(S3xC6) | 288,927 |
C23.20(S3xC6) = A4xC3:D4 | φ: S3xC6/D6 → C3 ⊆ Aut C23 | 36 | 6 | C2^3.20(S3xC6) | 288,928 |
C23.21(S3xC6) = C3xC23.16D6 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.21(S3xC6) | 288,648 |
C23.22(S3xC6) = C3xDic3.D4 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.22(S3xC6) | 288,649 |
C23.23(S3xC6) = C3xS3xC22:C4 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.23(S3xC6) | 288,651 |
C23.24(S3xC6) = C3xDic3:4D4 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.24(S3xC6) | 288,652 |
C23.25(S3xC6) = C3xD6:D4 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.25(S3xC6) | 288,653 |
C23.26(S3xC6) = C3xC23.21D6 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.26(S3xC6) | 288,657 |
C23.27(S3xC6) = C3xD4xDic3 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.27(S3xC6) | 288,705 |
C23.28(S3xC6) = C3xC23.23D6 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.28(S3xC6) | 288,706 |
C23.29(S3xC6) = C6xD4:2S3 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C23 | 48 | | C2^3.29(S3xC6) | 288,993 |
C23.30(S3xC6) = C3xC12.48D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.30(S3xC6) | 288,695 |
C23.31(S3xC6) = C3xC23.26D6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.31(S3xC6) | 288,697 |
C23.32(S3xC6) = C12xC3:D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.32(S3xC6) | 288,699 |
C23.33(S3xC6) = C3xC23.28D6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.33(S3xC6) | 288,700 |
C23.34(S3xC6) = C3xC12:7D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.34(S3xC6) | 288,701 |
C23.35(S3xC6) = C3xC24:4S3 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 24 | | C2^3.35(S3xC6) | 288,724 |
C23.36(S3xC6) = C6xC4oD12 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.36(S3xC6) | 288,991 |
C23.37(S3xC6) = C3xC6.C42 | central extension (φ=1) | 96 | | C2^3.37(S3xC6) | 288,265 |
C23.38(S3xC6) = Dic3xC2xC12 | central extension (φ=1) | 96 | | C2^3.38(S3xC6) | 288,693 |
C23.39(S3xC6) = C6xDic3:C4 | central extension (φ=1) | 96 | | C2^3.39(S3xC6) | 288,694 |
C23.40(S3xC6) = C6xC4:Dic3 | central extension (φ=1) | 96 | | C2^3.40(S3xC6) | 288,696 |
C23.41(S3xC6) = C6xD6:C4 | central extension (φ=1) | 96 | | C2^3.41(S3xC6) | 288,698 |
C23.42(S3xC6) = C6xC6.D4 | central extension (φ=1) | 48 | | C2^3.42(S3xC6) | 288,723 |
C23.43(S3xC6) = C2xC6xDic6 | central extension (φ=1) | 96 | | C2^3.43(S3xC6) | 288,988 |
C23.44(S3xC6) = S3xC22xC12 | central extension (φ=1) | 96 | | C2^3.44(S3xC6) | 288,989 |
C23.45(S3xC6) = C2xC6xD12 | central extension (φ=1) | 96 | | C2^3.45(S3xC6) | 288,990 |
C23.46(S3xC6) = Dic3xC22xC6 | central extension (φ=1) | 96 | | C2^3.46(S3xC6) | 288,1001 |